Зрительная труба кеплера: назначение и устройство

Любознательность и тяга к совершению новых открытий великого учёного Г. Галилея подарила миру замечательное изобретение, без которого невозможно представить себе современную астрономию — это телескоп . Продолжая исследования голландских учёных, итальянский изобретатель добился значительного увеличения масштаба телескопа за очень короткий срок — произошло это буквально за несколько недель.

Зрительная труба Галилея напоминала современные образцы лишь отдалённо — это была простая палка из свинца, на концах которой профессор поместил двояковыпуклую и двояковогнутую линзы.

Важной особенностью и главным отличием творения Галилея от существовавших ранее зрительных труб было хорошее качество изображения, полученное за счёт качественной шлифовки оптических линз — всеми процессами профессор занимался лично, не доверял тонкую работу никому. Трудолюбие и целеустремлённость учёного принесли свои плоды, хотя для достижения достойного результата пришлось проделать очень много кропотливой работы — из 300 линз нужными свойствами и качеством обладали лишь несколько вариантов.

Сохранившиеся до наших дней образцы у многих экспертов вызывают восхищение — даже по современным меркам, качество оптики является превосходным, и это при учёте того, что линзам отроду уже несколько веков.

Несмотря на предрассудки, царившие во времена Средневековья и склонность считать прогрессивные идеи «происками дьявола», зрительная труба обрела заслуженную популярность по всей Европе.

Усовершенствованное изобретение позволяло получить тридцатипятикратное увеличение, немыслимое для времён жизни Галилео. С помощью своей зрительной трубы, Галилей совершил массу астрономических открытий, что позволило открыть дорогу современной науке и вызвать энтузиазм и жажду исследований у множества пытливых и любознательных умов.

Оптическая система, придуманная Галилеем, обладала рядом недостатков — в частности, она была подвержена хроматической аберрации, однако последующие усовершенствования, проведённые учёными, позволили добиться минимизации этого эффекта. Стоит отметить, что при строительстве знаменитой Парижской обсерватории использовались телескопы, оборудованные как раз оптической системой Галилея.

Зрительная или подзорная труба Галилея обладает небольшим углом обзора — это можно считать главным её недостатком. Подобная оптическая система в настоящее время применяется в театральных биноклях, представляющих собой, по сути, две зрительных трубы, соединённые вместе.

Современные театральные бинокли с системой центральной внутренней фокусировки обычно предлагают 2.5-4 кратное увеличение, достаточное для наблюдения не только за театральными постановками, но и спортивными и концертными мероприятиями, подходят для экскурсионных поездок, связанных с детальным осмотром достопримечательностей.

Небольшой размер и изящный дизайн современных театральных биноклей делают их не только удобным оптическим инструментом, но и оригинальным аксессуаром.

Зрительная труба представляет собой оптический прибор, предназначенный для рассматривания глазом весьма удаленных предметов. Как и микроскоп, она состоит из объектива и окуляра; и тот и другой являются более или менее сложными оптическими системами, хотя и не столь сложными, как в случае микроскопа; однако мы их будем схематически представлять тонкими линзами. В зрительных трубах объектив и окуляр располагаются так, что задний фокус объектива почти совпадает с передним фокусом окуляра (рис. 253). Объектив дает действительное уменьшенное обратное изображение бесконечно удаленного предмета в своей задней фокальной плоскости; это изображение рассматривается в окуляр, как в лупу. Если передний фокус окуляра совпадает с задним фокусом объектива, то при рассматривании удаленного предмета из окуляра выходят пучки параллельных лучей, что удобно для наблюдения нормальным глазом в спокойном состоянии (без аккомодации) (ср. § 114). Но если зрение наблюдателя несколько отличается от нормального, то окуляр передвигают, устанавливая его «по глазам». Путем передвижения окуляра производится также «наводка» зрительной трубы при рассматривании предметов, расположенных на различных не очень больших расстояниях от наблюдателя.

Объектив зрительной трубы должен быть всегда собирающей системой, окуляр же может быть как собирающей, так и рассеивающей системой. Зрительная труба с собирающим (положительным) окуляром называется трубой Кеплера (рис. 254, а), труба с рассеивающим (отрицательным) окуляром — трубой Галилея (рис. 254, б). Объектив 1 зрительной трубы дает действительное обратное изображение удаленного предмета в своей фокальной плоскости . Расходящийся пучок лучей из точки падает на окуляр 2; так как эти лучи идут из точки в фокальной плоскости окуляра, то из него выходит пучок, параллельным побочной оптической оси окуляра под углом к главной оси. Попадая в глаз, лучи эти сходятся на его сетчатке и дают действительное изображение источника.

(В случае галилеевой трубы (б) глаз не изображен, чтобы не загромождать рисунка.) Угол — угол, который составляют с осью лучи, падающие на объектив.

Труба Галилея, нередко применяемая в обычном театральном бинокле, дает прямое изображение предмета, труба Кеплера — перевернутое. Вследствие этого, если труба Кеплера должна служить для земных наблюдении, то ее снабжают оборачивающей системой (дополнительной линзой или системой призм), в результате чего изображение становится прямым. Примером подобного прибора может служить призменный бинокль (рис. 255). Преимуществом трубы Кеплера является то, что в ней имеется действительное промежуточное изображение, в плоскость которого можно поместить измерительную шкалу, фотопластинку для производства снимков и т. п. Вследствие этого в астрономии и во всех случаях, связанных с измерениями, применяется труба Кеплера.

Телескопы — астрономические оптические приборы, предназначенные для наблюдения небесных тел. Телескопы используются с применением различных приемников излучения для визуальных, фотографических, спектральных, фотоэлектрических наблюдений небесных светил.

Визуальные телескопы имеют объектив и окуляр и представляют собой так называемую телескопическую оптическую систему: они преобразуют параллельный пучок лучей, входящих в объектив, в параллельный же пучок, выходящий из окуляра. В такой системе задний фокус объектива совпадает с передним фокусом окуляра. Основные ее оптические характеристики: видимое увеличение Г, угловое поле зрения 2W, диаметр выходного зрачка D», разрешающая способность и проницающая сила.

Видимое увеличение оптической системы — это отношение угла, под которым наблюдается изображение, даваемое оптической системой прибора, к угловому размеру объекта при наблюдении его непосредственно глазом. Видимое увеличение телескопической системы:

Г=f»об/f»ок=D/D»,

где f»об и f»ок фокусные расстояния объектива и окуляра,

D — диаметр входного,

D» — выходного зрачка. Таким образом, увеличивая фокусное расстояние объектива или уменьшая фокусное расстояние окуляра, можно достичь больших увеличений. Однако чем больше увеличение телескопа, тем меньше его поле зрения и тем больше искажения изображений объектов из-за несовершенства оптики системы.

Выходной зрачок представляет собой наименьшее сечение светового пучка, выходящего из телескопа. При наблюдениях зрачок глаза совмещается с выходным зрачком системы; поэтому он не должен быть больше зрачка глаза наблюдателя. Иначе часть света, собранного объективом, не попадет в глаз и будет потеряна. Обычно диаметр входного зрачка (оправа объектива) гораздо больше зрачка глаза, и точечные источники света, в частности звезды, при наблюдении их через телескоп кажутся значительно более яркими. Их кажущаяся яркость пропорциональна квадрату диаметра входного зрачка телескопа. Слабые звезды, не видимые невооруженным глазом, могут быть хорошо видны в телескоп с большим диаметром входного зрачка. Количество звезд, видимых в телескоп, гораздо больше, чем наблюдаемое непосредственно глазом.

телескоп оптический аберрация астрономический

1. Телескопические оптические системы

1 Аберрации оптических систем

Аберрации оптических систем (лат. — отклонение) — искажения, погрешности изображения, вызванные несовершенством оптической системы. Аберрациям, в разной степени, подвержены любые объективы, даже самые дорогие. Считается, что чем больше диапазон фокусных расстояний объектива, тем выше уровень его аберраций.

Наиболее распространённые виды аберраций ниже.

2 Сферическая аберрация

Большинство объективов сконструировано с использованием линз со сферическими поверхностями. Такие линзы просты в изготовлении, но сферическая форма линз не идеальна для получения резкого изображения. Эффект сферической аберрации проявляется в смягчении контраста и размытии деталей, так называемое «мыло».

Как это происходит? Параллельно идущие лучи света, при прохождении через сферическую линзу преломляется, лучи проходящие через край линзы, сливаются в фокальной точке ближе к линзе, чем световые лучи, проходящие через центр линзы. Другими словами, края линзы имеют более короткое фокусное расстояние, чем центр. На изображении ниже наглядно видно как проходит пучок света через сферическую линзу и из-за чего появляются сферические аберрации.

Световые лучи, проходящие сквозь линзу вблизи оптической оси (ближе к центру), фокусируется в области В, дальше от линзы. Световые лучи, проходящие сквозь краевые зоны линзы, фокусируются в области А, ближе к линзе.

3 Хроматическая аберрация

Хроматические аберрации (ХА) — явление вызванное дисперсией света проходящего через объектив, т.е. разложением луча света на составляющие. Лучи с разной длиной волны (разного цвета) преломляются под разными углами, поэтому из белого пучка образуется радуга.

 

Хроматические аберрации приводят к снижению чёткости изображения и появлению цветной «бахромы», особенно на контрастных объектах.

Для борьбы с хроматическими аберрациями применяются специальные апохроматические линзы из низкодисперсного стекла, не разлагающего световые лучи на волны.

1.4 Коматическая аберрация (кома)

Кома или коматическая аберрация это явление, видимое на периферии изображения, которое создается объективом, скорректированным на сферическую аберрацию, и вызывает сведение световых лучей, поступающих на край объектива под каким-то углом, в форме кометы, а не в форме желаемой точки. Отсюда и ее название.

Форма кометы ориентирована радиально, причем ее хвост направлен либо к центру, либо от центра изображения. Вызываемая этим размытость по краям изображения называется коматической засветкой. Кома, которая может иметь место даже в объективах, точно воспроизводящих точку как точку на оптической оси, вызывается разницей преломления между световыми лучами из точки, расположенной вне оптической оси, и проходящими через края объектива, и главным световым лучом от той же точки, проходящим через центр объектива.

Кома увеличивается по мере увеличения угла главного луча и ведет к снижению контрастности по краям изображения. Определенной степени улучшения можно добиться диафрагмированием объектива. Кома также может привести к засвечиванию размытых участков изображения, создавая неприятный эффект.

Ликвидация как сферической аберрации, так и комы для объекта, расположенного на определенном съемочном расстоянии, называется апланатизмом, а объектив, скорректированный таким образом, называется апланатом.

5 Астигматизм

При объективе, скорректированным на сферическую и коматическую аберрацию, точка объекта на оптической оси будет точно воспроизведена как точка в изображении, но точка объекта, расположенная вне оптической оси, появится не как точка в изображении, а скорее как затемнение или как линия. Такой тип аберрации называется астигматизмом.

 

Можно наблюдать это явление по краям изображения, если слегка сместить фокус объектива в положение, в котором точка объекта резко изображена как линия, ориентированная в радиальном направлении от центра изображения, и опять сместить фокус в другое положение, в котором точка объекта резко изображена в виде линии, ориентированной в направлении концентрического круга. (Расстояние между этими двумя положениями фокуса называется астигматической разницей.)

Другими словами, лучи света в меридиональной плоскости и лучи света в сагиттальной плоскости находятся в различном положении, поэтому эти две группы лучей не соединяются в одной точке. Когда объектив установлен в оптимальное фокусное положение для меридиональной плоскости, световые лучи в сагиттальной плоскости сведены в линию в направлении концентрического круга (это положение называется меридиональным фокусом).

Аналогичным образом, когда объектив установлен в оптимальном фокусном положении для сагиттальной плоскости, световые лучи в меридиональной плоскости образуют линию, ориентированную в радиальном направлении (это положение называется сагиттальным фокусом).

 

При этом виде искажения предметы на изображении выглядят искривленными, местами размытыми, прямые линии выглядят изогнутыми, возможны затемнения. Если линза страдает астигматизмом, то её пускают на запчасти, так как это явление не излечимо.

6 Кривизна поля изображения

При этом виде аберраций плоскость изображения становится изогнутой, таким образом если центр изображения в фокусе, то края изображения не в фокусе и наоборот, если края в фокусе, то центр не в фокусе.

 

1.7 Дисторсия (искажение)

Этот вид аберрации проявляется в искажении прямых линий. Если прямые линии вогнутые дисторсию называют подушкообразной, если выпуклыми — бочкообразной. Объективы с переменным фокусным расстоянием обычно создают бочкообразную дисторсию на «широком угле» (минимальное значение «зума») и подушкообразную — в режиме «телефото» (максимальное значение «зума»).

2. Габаритный расчет оптической системы

Начальные данные:

Для определения фокусных расстояний объектива и окуляра решим следующую систему:

f’ ob + f’ ok = L;

f’ ob / f’ ok =|Г|;

f’ ob + f’ ok = 255;

f’ ob / f’ ok =12.

f’ ob +f’ ob /12=255;

f’ ob =235.3846 мм;

f’ ok =19.6154 мм;

Диаметр входного зрачка вычисляется по формуле D=D’Г

D вх =2.5*12=30 мм;

Линейное поле зрения окуляра найдем по формуле:

; y’ = 235.3846*1.5 o ; y’=6.163781 мм;

Угловое поле зрения окуляра находится по формуле:

Расчет призменной системы

D 1 -входная грань первой призмы;

D 1 =(D вх +2y’)/2;

D 1 =21.163781 мм;

Длина хода лучей первой призмы =*2=21.163781*2=42.327562;

D 2 -входная грань второй призмы (вывод формулы в прил. 3);

D 2 =D вх *((D вх -2y’)/L)*(f’ ob /2+);

D 2 =18.91 мм;

Длина хода лучей второй призмы =*2=18.91*2=37.82;

При расчёте оптической системы расстояние между призмами выбирают в пределах 0,5-2 мм;

Для расчета призменной системы, необходимо привести её к воздуху.

Приведём к воздуху длину хода лучей призм:

l 01 -приведённая к воздуху длина первой призмы

n=1.5688 (коэффициент преломления стекла БК10)

l 01 =l 1 /n=26.981 мм

l 02 = l 2 /n=24.108 мм

Определение величины перемещения окуляра для обеспечения фокусировки в пределах ±5 дптр

прежде необходимо вычеслить цену одной диоптрии f’ ok 2 /1000 = 0,384764 (цена одной дптр.)

Перемещение окуляра для обеспечения заданной фокусировки:  мм

Проверка на необходимость нанесения на отражающие грани отражательного покрытия:

(допустимый угол отклонения отклонения от осевого луча, когда еще не нарушается условие полного внутреннего отражения)

(предельный угол падения лучей на входную грань призмы, при котором отсутствует необходимость нанесения отражательного покрытия) . Следовательно: отражательное покрытие не нужно.

Расчет окуляра:

Так как 2ω’ = 34.9 о то необходимый тип окуляра — симметричный.

f’ ok =19.6154 мм (рассчитанное фокусное расстояние);

К п = S ’ F /f’ ok = 0.75(переводной коэффициент)

S ’ F = К п * f’ ok

S ’ F =0.75* f’ ok (значение заднего фокального отрезка)

Удаление выходного зрачка определяется по формуле: S’ p = S’ F + z’ p

z’ p находится по формуле Ньютона: z’ p = -f’ ok 2 /z p где z p — расстояние от переднего фокуса окуляра до апертурной диафрагмы. В зрительных трубах с призменной обарачивающей системой обычно апертурной диафрагмой является оправа объектива. В первом приближении можно принять z p равным фокусному расстоянию объектива со знаком «минус», следовательно:

z p = -235.3846 мм

Удаление выходного зрачка равно:

S’ p = 14.71155+1.634618=16.346168 мм

Аберрационный расчет компонентов оптической системы.

Аберрационный расчет включает в себя расчет аберраций окуляра и призм для трех длин волн.

Аберрационный расчет окуляра:

Расчет аберраций окуляра проводится в обратном ходе лучей, с помощью пакета прикладных программ «РОСА».

δy’ ок =0,0243

Расчет аберраций призменной системы:

Аберрации отражательных призм вычисляют по формулам аберраций третьего порядка эквивалентной плоскопараллельной пластины. Для стекла БК10 (n=1.5688).

Продольная сферическая аберрация:

δS’ пр =(0.5*d*(n 2 -1)*sin 2 б)/n 3

б’=arctg(D/2*f’ ob)=3.64627 o

d=2D 1 +2D 2 =80.15 мм

dS’ пр =0.061337586

Хроматизм положения:

(S’ f — S’ c) пр =0.33054442

Меридиональная кома:

δy»=3d(n 2 -1)*sin 2 б’*tgω 1 /2n 3

δy» = -0.001606181

Вычисление аббераций объектива:

Продольная сферическая абберация δS’ сф:

δS’ сф =-(δS’ пр + δS’ ок)=-0.013231586

Хроматизм положения:

(S’ f — S’ c) об = δS’ хр =-((S’ f — S’ c) пр +(S’ f — S’ c) ок)=-0.42673442

Меридиональная кома:

δy’ к = δy’ ок — δy’ пр

δy’ к =0.00115+0.001606181=0.002756181

Определение конструктивных элементов объектива.

Аберрации тонкой оптической системы определяют тремя основными параметрами P,W,C. Приближенная формула проф. Г.Г.Слюсарева связывает основные параметры P и W:

P = P 0 +0.85(W-W 0)

Расчет двухлинзового склеенного объектива сводится к отысканию определенной комбинации стекол с заданными значениями P 0 и С.

Расчет двухлинзового объектива по методу проф. Г.Г. Слюсарева:

) По полученным из условий компенсации аберраций призменной системы и окуляра значениям аберраций объектива δS’ хр, δS’ сф, δy’ к. находятся аберрационные суммы:

S I хр = δS’ хр =-0.42673442

S I = 2*δS’ сф /(tgб’) 2

S I =6.516521291

S II =2* δy к ’/(tgб’) 2 *tgω

S II =172.7915624

) По суммам находятся параметры системы:

S I хр / f’ ob

S II / f’ ob

) Вычисляется P 0:

P 0 = P-0.85(W-W 0)

) По графику-номограмме линия пересекает 20-ую клетку. Проверим комбинации стекол К8Ф1 и КФ4ТФ12:

) Из таблицы находятся значения Р 0 ,φ к и Q 0 , соответствующие заданному значению для К8Ф1 (не подходит)

φ k = 2.1845528

для КФ4ТФ12 (подходит)

) После нахождения Р 0 ,φ к, и Q 0 вычисляется Q по формуле:

 

) После нахождения Q определяются значения a 2 и a 3 первого нулевого луча (а 1 =0, т.к. предмет находится в бесконечности, а 4 =1 — из условия нормировки):

 

) По значениям а i определяются радиусы кривизны тонких линз:

Радиуса Тонких линз:

 

 

) После вычисления радиусов тонкого объектива выбираются толщины линз из следующих конструктивных соображений. Толщина по оси положительной линзы d1 складывается из абсолютных величин стрелок L1, L2 и толщины по краю, которая должна быть не меньше 0.05D.

h=D вх /2

L=h 2 /(2*r 0)

L 1 =0.58818 2 =-1.326112

d 1 =L 1 -L 2 +0.05D

) По полученным толщинам, вычисляют высоты:

h 1 =f об =235.3846

h 2 =h 1 -a 2 *d 1

h 2 =233.9506

h 3 =h 2 -a 3 *d 2

) Радиусы кривизны объектива с конечными толщинами:

r 1 =r 011 =191.268

r 2 = r 02 *(h 1 /h 2)

r 2 =-84.317178

r 3 =r 03 *(h 3 /h 1)

Контроль результатов проводится расчетом на компьютере по программе «РОСА»:

равнение аберраций объектива

Полученные и расчитанные абберации близки по значениям.

равнение аберраций зрительной трубы

Компоновка заключается в определении расстояния до призменной системы от объектива и окуляра. Расстояние между объективом и окуляром определяется как (S’ F ’ ob + S’ F ’ ok + Δ). Это расстояние складывается из расстояния между объективом и первой призмой, равного половине фокусного расстояния объектива, длины хода луча в первой призме, расстояния между призмами, длины хода луча во второй призме, расстояния от последней поверхности второй призмы до фокальной плоскости и расстояния от этой плоскости до окуляра.

692+81.15+41.381+14.777=255

Для астрономических объективов разрешающая способность определяется наименьшим угловым расстоянием между двумя звездами, которые в телескоп могут быть видны раздельно. Теоретически разрешающая способность визуального телескопа (в секундах дуги) для желто-зеленых лучей, к которым наиболее чувствителен глаз, может быть оценена выражением 120/D, где D — диаметр входного зрачка телескопа, выраженный в миллиметрах.

Проницающей силой телескопа называется предельная звездная величина светила, доступного наблюдению с помощью данного телескопа при хороших атмосферных условиях. Плохое качество изображения, вследствие дрожания, поглощения и рассеивания лучей земной атмосферой, снижает предельную звездную величину реально наблюдаемых звезд, уменьшая концентрацию световой энергии на сетчатке глаза, фотопластинке или другом приемнике излучения в телескопе. Количество света, собираемого входным зрачком телескопа, растет пропорционально его площади; при этом возрастает и проницающая сила телескопа. Для телескопа с диаметром объектива D миллиметров проницающая сила, выраженная в звездных величинах при визуальных наблюдениях, определяется по формуле:

mvis=2,0+5 lg D.

В зависимости от оптической системы телескопы разделяются на линзовые (рефракторы), зеркальные (рефлекторы) и зеркально-линзовые. Если линзовая телескопическая система имеет положительный (собирающий) объектив и отрицательный (рассеивающий) окуляр, то она называется системой Галилея. Телескопическая линзовая система Кеплера имеет положительный объектив и положительный окуляр.

Система Галилея дает прямое мнимое изображение, имеет малое поле зрения и небольшую светосилу (большой диаметр выходного зрачка). Простота конструкции, небольшая длина системы и возможность получения прямого изображения — основные ее преимущества. Но поле зрения этой системы относительно невелико, а отсутствие между объективом и окуляром действительного изображения объекта не позволяет применять визирную сетку. Поэтому система Галилея не может быть использована для измерений в фокальной плоскости. В настоящее время она применяется в основном в театральных биноклях, где не требуется большого увеличения и поля зрения.

Система Кеплера дает действительное и перевернутое изображение объекта. Однако при наблюдении небесных светил последнее обстоятельство не так важно, и поэтому система Кеплера наиболее распространена в телескопах. Длина трубы телескопа при этом равна сумме фокусных расстояний объектива и окуляра:

L=f»об+f»ок.

Система Кеплера может быть снабжена визирной сеткой в виде плоскопараллельной пластинки со шкалой и перекрестием нитей. Эта система широко используется в сочетании с системой призм, позволяющей получать прямое изображение объективов. Кеплеровские системы применяются в основном для визуальных телескопов.

Кроме глаза, являющегося приемником излучения в визуальных телескопах, изображения небесных объектов могут регистрироваться на фотоэмульсии (такие телескопы называются астрографами); фотоэлектронный умножитель и электронно-оптический преобразователь позволяют усилить во много раз слабый световой сигнал от звезд, удаленных на большие расстояния; изображения могут проецироваться на трубку телевизионного телескопа. Изображение объекта может быть направлено и в астроспектрограф или астрофотометр.

Для наведения трубы телескопа на нужный небесный объект служит монтировка (штатив) телескопа. Она обеспечивает возможность поворота трубы вокруг двух взаимно перпендикулярных осей. Основание монтировки несет ось, относительно которой может вращаться вторая ось с вращающейся вокруг нее трубой телескопа. В зависимости от ориентации осей в пространстве монтировки делятся на несколько типов.

В альтазимутальных (или горизонтальных) монтировках одна ось расположена вертикально (ось азимутов), а вторая (ось зенитных расстояний) — горизонтально. Основной недостаток альтазимутальной монтировки — необходимость поворота телескопа вокруг двух осей для слежения за небесным объектом, движущимся вследствие видимого суточного вращения небесной сферы. Альтазимутальными монтировками снабжают многие астрометрические инструменты: универсальные инструменты, пассажные и меридианные круги.

Почти все современные большие телескопы имеют экваториальную (или параллактическую) монтировку, в которой главная ось — полярная или часовая — направлена на полюс мира, а вторая — ось склонений — перпендикулярна ей и лежит в плоскости экватора. Преимущество параллактической монтировки в том, что для слежения за суточным движением звезды достаточно поворачивать телескоп только вокруг одной полярной оси.

Перемещение окуляра на 1 дптр. 0,4 мм

Конструктивные элементы

19.615; =14.755;

Осевой пучок

    Δ C Δ F S´ F -S´ C    
                 
                 
                 
                 

Главный луч

                     
                           
                     

 

Меридиональное сечение наклонного пучка

  ω 1 =-1 0 30’ ω 1 =-1 0 10’30”
             
             
             
             
             
             

 

 

Сменная оптика для фотоаппаратов с объективом типа Vario Sonnar

 

Вместо вступления предлагаю посмотреть результаты охоты на ледяных бабочек с помощью фотопушки, приведенной выше. Пушка представляет собой камеру Casio QV4000 с оптической насадкой типа трубы Кеплера, составленной из объектива Гелиос-44 в качестве окуляра и объектива Pentacon 2,8/135.

Обычно считается, что аппараты с жестко встроенным объективом имеют существенно меньшие возможности, чем аппараты со сменной оптикой. В целом, это, безусловно, так, однако классические системы со сменной оптикой далеко не так идеальны, как может показаться на первый взгляд. И при некоторой удаче бывает, что частичная замена оптики (оптические насадки) не менее эффективна, чем замена оптики целиком. Кстати, этот подход очень популярен у кинокамер. Более-менее безболезненно менять оптику, имеющую произвольное фокусное расстояние, можно только у дальномерных аппаратов с фокальным шторным затвором, но в этом случае мы имеем только весьма приближенное понятие о том, что же на самом деле видит аппарат. Эта проблема решается у зеркальных аппаратов, которые позволяют видеть на матовом стекле изображение, сформированное именно тем объективом, который сейчас вставлен в камеру. Здесь получается, казалось бы, идеальная ситуация, но только для длиннофокусных объективов. Как только мы начинаем использовать с зеркальными камерами широкоугольные объективы, как сразу оказывается, что каждый из этих объективов имеет дополнительные линзы, роль которых — обеспечить возможность поместить между объективом и пленкой зеркало. Фактически можно было бы сделать камеру, у которой элемент, отвечающий за возможность размещения зеркала, был бы несменным, а менялись только передние компоненты объектива. Близкий по идеологии подход используется в зеркальных визирах кинокамер. Так как между телескопической насадкой и основным объективом ход лучей параллельный, то между ними можно разместить светоделительную призму-куб или полупрозрачную пластину под углом 45 градусов. Один из двух основных типов объективов с переменным фокусным расстоянием — трансфокатор — также объединяет объектив с постоянным фокусным расстоянием и афокальную систему. Изменение фокусного расстояния в трансфокаторах осуществляется за счет изменения увеличения афокальной насадки, достигаемого путем перемещения ее компонентов.

К сожалению, универсальность редко приводит к хорошим результатам. А более-менее удачная коррекция аберраций достигается только подбором всех оптических элементов системы. Рекомендую всем прочитать перевод статьи « » by Erwin Puts. Я это все написал только для того, чтобы подчеркнуть, что в принципиальном плане объективы зеркальной камеры отнюдь не лучше, чем встроенные объективы с оптическими насадками. Проблема состоит в том, что конструктор оптических насадок может рассчитывать только на собственные элементы и не может вмешаться в конструкцию объектива. Поэтому удачная работа объектива с насадкой встречается существенно реже, чем хорошо работающий, целиком спроектированный одним конструктором объектив, пусть даже и с удлиненным задним рабочим отрезком. Комбинация готовых оптических элементов, которые в сумме дают приемлемые аберрации, встречается редко, но все же случается. Обычно афокальные насадки представляют собой зрительную трубу Галилея. Однако их можно построить и по оптической схеме трубы Кеплера.

Оптическая схема трубы Кеплера.

В этом случае мы будем иметь перевернутое изображение, ну да к этому фотографам не привыкать. У некоторых цифровых аппаратов есть возможность переворачивать изображение на экране. Хотелось бы иметь такую возможность у всех цифровых аппаратов, поскольку городить оптическую систему для поворота изображения в цифровых камерах представляется расточительным. Впрочем, простейшую систему из зеркала, прикрепленного под углом 45 градусов к экрану, можно соорудить за пару минут.

Итак, мне удалось подобрать комбинацию стандартных оптических элементов, которая может использоваться совместно с самым распространенным на сегодняшний день объективом цифровых камер с фокусным расстоянием 7-21 мм. Sony называет этот объектив Vario Sonnar, аналогичные по конструкции объективы установлены в камерах Canon (G1,G2), Сasio (QV3000 ,QV3500 ,QV4000), Epson PC 3000Z , Toshiba PDR-M70 , Sony (S70 ,S75,S85). Получившаяся у меня труба Кеплера показывает неплохие результаты и позволяет использовать в своей конструкции самые разные сменные объективы. Система предназначена для работы, когда штатный объектив установлен на максимальное фокусное расстояние 21 мм, и в качестве окуляра зрительной трубы к нему пристыковывается объектив Юпитер-3 или Гелиос-44, далее устанавливаются удлинительные меха и произвольный объектив с фокусным расстоянием большим 50 мм.

Оптические схемы объективов, использовавшихся в качестве окуляров телескопической системы.

Удача состояла в том, что если разместить объектив Юпитер-3 входным зрачком к объективу аппарата, а выходным — к мехам, то аберрации на краях кадра оказываются весьма умеренными. Если использовать связку объектив Pentacon 135 в качестве объектива и объектив Юпитер 3 в качестве окуляра, то на глаз, как бы мы не поворачивали окуляр, картинка фактически не меняется, мы имеем трубу с 2,5-кратным увеличением. Если же вместо глаза мы будем использовать объектив аппарата, то картина кардинально меняется, и использование объектива Юпитер-3, повернутого входным зрачком к объективу камеры, предпочтительнее.

Casio QV3000 + Юпитер-3 + Pentacon 135

Если использовать в качестве окуляра Юпитер-3, а в качестве объектива Гелиос-44, или составить систему из двух объективов Гелиос-44, то фокусное расстояние получившейся системы фактически не меняется, однако, используя растяжение меха, мы можем производить съемку почти с любого расстояния.

На фото снимок почтовой марки, сделанный системой, составленной из камеры Casio QV4000 и двух объективов Гелиос-44. Диафрагма объектива камеры 1:8. Размер изображения, попавшего в кадр, 31 мм. Приведены фрагменты, соответствующие центру и углу кадра. У самого края качество изображения резко ухудшается по разрешению и падает освещенность. При использовании подобной схемы есть смысл использовать часть изображения, занимающую примерно 3/4 площади кадра. Из 4 Мп делаем 3, а из 3 Мп делаем 2,3 — и все очень здорово

 

Если же использовать длиннофокусные объективы, то увеличение системы будет равно отношению фокусных расстояний окуляра и объектива, и учитывая, что фокусное расстояние Юпитера-3 — 50 мм, мы легко можем создать насадку с 3-кратным увеличением фокусного расстояния. Неудобством подобной системы является виньетирование углов кадра. Поскольку запас по полю совсем невелик, любое диафрагмирование объектива трубы приводит к тому, что мы видим изображение, вписанное в круг, расположенный в центре кадра. Причем в центре кадра это хорошо, но может оказаться, что и не в центре, это значит, что система не обладает достаточной механической жесткостью, и под собственной тяжестью объектив сместился от оптической оси. Виньетирование кадров становится малозаметным, если использовать объективы для среднеформатных камер и фотоувеличителей. Наилучшие результаты по этому параметру показала система из объектива Ортагоз f=135 мм от фотоаппарата .
Окуляр — Юпитер-3, объектив — Ортагоз f=135 мм,

Однако и в этом случае требования к соосности системы весьма и весьма строгие. Малейшее смещение системы приведет к виньетированию одного из углов. Для того, чтобы проверить, насколько хорошо отъюстирована ваша система, можно закрыть диафрагму объектива Ортагоз и посмотреть, насколько по центру расположен образовавшийся круг. Съемка всегда проводится при полностью открытой диафрагме объектива и окуляра, а диафрагмирование осуществляется диафрагмой встроенного объектива камеры. В большинстве случаев фокусировка производится изменением длины меха. Если объективы, используемые в телескопической системе, имеют собственные подвижки, то точная фокусировка достигается их вращением. И наконец, дополнительная фокусировка может осуществляться перемещением объектива фотоаппарата. Причем при хорошей освещенности работает даже система автофокусировки. Фокусное расстояние получившейся системы великовато для портретной съемки, однако для оценки качества фрагмент снимка лица вполне пригоден.

Оценить работу объектива без фокусировки на бесконечность невозможно, и, хотя погода явно не способствовала подобным снимкам, привожу и их.

Можно поставить объектив с меньшим, чем у окуляра, фокусным расстоянием, и вот что тогда получится. Впрочем, это скорее курьез, чем способ практического применения.

Несколько слов о конкретной реализации установки

Приведенные способы крепления оптических элементов к камере — не руководство к действию, а информация для размышления. При работе с камерой Casio QV4000 и QV3500 предлагается использовать родное переходное кольцо LU-35A с резьбой 58 мм и уже далее к ней крепить все остальные оптические элементы. При работе с Casio QV 3000 я использовал конструкцию крепления насадок с резьбой 46 мм, описанную в статье «Доработка камеры Casio QV-3000 ». Для крепления объектива Гелиос-44 на его хвостовую часть одевалась пустая оправа для светофильтров с резьбой 49 мм и прижималась гайкой с резьбой М42. Гайку я получил, отпилив часть от переходного удлинительного кольца. Далее использовалось переходное оборачивающее кольцо Jolos с резьбы М49 на М59. С другой стороны на объектив навинчивалось оборачивающее кольцо для макросъемки М49×0,75-М42×1, далее муфта М42, также сделанная из распиленного удлинительного кольца, а далее стандартные меха и объективы с резьбой М42. Переходных колец с резьбы М42 существует великое множество. Я использовал переходные кольца на байонет Б или В, или переходное кольцо на резьбу М39. Для крепления объектива Юпитер-3 в качестве окуляра в резьбу для светофильтра вкручивалось переходное повышающее кольцо с резьбы М40,5 на М49 мм, далее использовалось оборачивающее кольцо Jolos с М49 на М58, и далее эта система крепилась к аппарату. С другой стороны объектива была накручена муфта с резьбой М39, далее переходное кольцо с М39 на М42, и далее аналогично системе с объективом Гелиос-44.

Результаты тестирования получившихся оптических систем вынесены в отдельный файл . В нем содержатся фотографии тестируемых оптических ситем и снимки мир, расположенных в центре в углу кадра. Здесь же привожу только итоговую таблицу значений максимального разрешения в центре и в углу кадра для протестированных конструкций. Разрешение выражено в штрих /пиксель. Черная и белая линии — 2 штриха.

Схема пригодна для работы на любых дистанциях, но особо впечатляют результаты при макросъемке, поскольку наличие в системе мехов позволяет легко осуществить фокусировку на близлежащие предметы. Хотя при некоторых комбинациях Юпитер-3 дает более высокое разрешение, однако большее, чем у Гелиоса-44, виньетирование делают его менее привлекательным в качестве постоянного окуляра для системы со сменными объективами.

Хотелось бы пожелать фирмам, выпускающим всевозможные кольца и аксессуары для фотокамер, изготавливать муфту с резьбой М42 и переходные кольца с резьбы М42 на резьбу светофильтра, причем резьба М42 внутренняя, а для светофильтра внешняя.

Полагаю, что если какой-нибудь оптический завод сделает специализированный окуляр телескопической системы для использования с цифровыми камерами и произвольными объективами, то такой продукт будет пользоваться определенным спросом. Естественно, что подобная оптическая конструкция должна быть укомплектована переходным кольцом для крепления к камере и резьбой или байонетом под существующие объективы,

Вот, собственно говоря, и все. Я показал, что у меня получилось, а вы уж сами оценивайте, устраивает вас такое качество или нет. И еще. Раз нашлась одна удачная комбинация, то, наверное, есть и другие. Ищите, возможно, вам повезет.

В эти дни мы отмечаем 400-летие создания оптического телескопа — самого простого и самого эффективного научного прибора, распахнувшего перед человечеством дверь во Вселенную. Честь создания первых телескопов по праву принадлежит Галилею.

Как известно, Галилео Галилей занялся экспериментами с линзами в середине 1609 г., после того как узнал, что в Голландии для потребностей мореплавания была изобретена зрительная труба. Ее изготовили в 1608 году, возможно, независимо друг от друга голландские оптики Ганс Липперсгей, Яков Мециус и Захария Янсен. Всего за полгода Галилею удалось существенно усовершенствовать это изобретение, создать на его принципе мощный астрономический инструмент и сделать ряд изумительных открытий.

Успех Галилея в совершенствовании телескопа нельзя считать случайным. Итальянские мастера стекла уже основательно прославились к тому времени: еще в XIII в. они изобрели очки. И именно в Италии была на высоте теоретическая оптика. Трудами Леонардо да Винчи она из раздела геометрии превратилась в практическую науку. «Сделай очковые стекла для глаз, чтобы видеть Луну большой», — писал он в конце XV в. Возможно, хотя и нет этому прямых подтверждений, Леонардо удалось осуществить телескопическую систему.

Оригинальные исследования по оптике провел в середине XVI в. итальянец Франческо Мавролик (1494-1575). Его соотечественник Джованни Батиста де ла Порта (1535-1615) посвятил оптике два великолепных произведения: «Натуральная магия» и «О преломлении». В последнем он даже приводит оптическую схему телескопа и утверждает, что ему удавалось видеть на большом расстоянии мелкие предметы. В 1609 г. он пытается отстаивать приоритет в изобретении зрительной трубы, но фактических подтверждений этому оказалось недостаточно. Как бы то ни было, работы Галилея в этой области начались на хорошо подготовленной почве. Но, отдавая должное предшественникам Галилея, будем помнить, что именно он сделал из забавной игрушки работоспособный астрономический инструмент.

Свои опыты Галилей начал с простой комбинации положительной линзы, в качестве объектива, и отрицательной линзы, в качестве окуляра, дающей трехкратное увеличение. Сейчас такая конструкция называется театральным биноклем. Это самый массовый оптический прибор после очков. Разумеется, в современных театральных биноклях в качестве объектива и окуляра применяются высококачественные просветленные линзы, иногда даже сложные, составленные из нескольких стекол. Они дают широкое поле зрения и отличное изображение. Галилей же использовал простые линзы как для объектива, так и для окуляра. Его телескопы страдали сильнейшими хроматической и сферической аберрациями, т.е. давали размытое на краях и не сфокусированное в различных цветах изображение.

Однако Галилей не остановился, подобно голландским мастерам, на «театральном бинокле», а продолжил эксперименты с линзами и к январю 1610 г. создал несколько инструментов с увеличением от 20 до 33 раз. Именно с их помощью он совершил свои замечательные открытия: обнаружил спутники Юпитера, горы и кратеры на Луне, мириады звезд в Млечном Пути, и т. д. Уже в середине марта 1610 г. в Венеции на латинском языке тиражом 550 экземпляров вышел труд Галилея «Звездный вестник», где были описаны эти первые открытия телескопической астрономии. В сентябре 1610 г. ученый открывает фазы Венеры, а в ноябре обнаруживает признаки кольца у Сатурна, хотя и не догадывается об истинном смысле своего открытия («Высочайшую планету тройною наблюдал», — пишет он в анаграмме, пытаясь закрепить за собой приоритет открытия). Пожалуй, ни один телескоп последующих столетий не дал такого вклада в науку, как первый телескоп Галилея.

Однако те любители астрономии, кто пытался собирать телескопы из очковых стекол, нередко удивляются малым возможностям своих конструкций, явно уступающих по «наблюдательным возможностям» кустарному телескопу Галилея. Нередко современные «Галилеи» не могут обнаружить даже спутники Юпитера, не говоря уже о фазах Венеры.

Во Флоренции, в Музее истории науки (рядом со знаменитой картинной галереей Уффици) хранятся два телескопа из числа первых, построенных Галилеем. Там же находится и разбитый объектив третьего телескопа. Эта линза использовалась Галилеем для многих наблюдений в 1609-1610 гг. и была подарена им Великому герцогу Фердинанду II. Позже линза была случайно разбита. После смерти Галилея (1642 г.) эта линза хранилась у принца Леопольда Медичи, а после его смерти (1675 г.) была присоединена к коллекции Медичи в галерее Уффици. В 1793 г. коллекция передали Музею истории науки.

Очень интересна декоративная фигурная рамка из слоновой кости, изготовленная для галилеевской линзы гравером Витторио Кростеном. Богатый и причудливый растительный орнамент перемежается с изображениями научных инструментов; в узор органично включены несколько латинских надписей. Вверху ранее находилась лента, ныне утраченная, с надписью «MEDICEA SIDERA» («Звезды Медичи»). Центральную часть композиции венчает изображение Юпитера с орбитами 4 его спутников, окруженное текстом «CLARA DEUM SOBOLES MAGNUM IOVIS INCREMENTUM» («Славное [молодое] поколение богов, великое потомство Юпитера»). Слева и справа — аллегорические лики Солнца и Луны. Надпись на ленте, оплетающей венок вокруг линзы, гласит: «HIC ET PRIMUS RETEXIT MACULAS PHEBI ET IOVIS ASTRA» («Он первым открыл и пятна Феба (т.е. Солнца), и звезды Юпитера»). На картуше внизу текст: «COELUM LINCEAE GALILEI MENTI APERTUM VITREA PRIMA HAC MOLE NON DUM VISA OSTENDIT SYDERA MEDICEA IURE AB INVENTORE DICTA SAPIENS NEMPE DOMINATUR ET ASTRIS» («Небо, открытое зоркому разуму Галилея, благодаря этой первой стеклянной вещи показало звезды, до сих пор невидимые, по праву названные их первооткрывателем Медицейскими. Ведь мудрец властвует и над звездами»).

Информация об экспонате содержится на сайте Музея истории науки: ссылка №100101 ; ссылка №404001 .

В начале ХХ века хранящиеся во флорентийском музее телескопы Галилея были изучены (см. табл.). С ними были даже проведены астрономические наблюдения.

Оптические характеристики первых объективов и окуляров телескопов Галилея (размеры в мм)

Оказалось, что первая труба имела разрешающую способность 20″ и поле зрения 15″. А вторая, соответственно, 10″ и 15″. Увеличение первой трубы было 14-кратным, а второй 20-кратным. Разбитый объектив третьей трубы с окулярами от первых двух труб давал бы увеличение в 18 и 35 раз. Итак, мог ли Галилей сделать свои изумительные открытия, используя столь несовершенные инструменты?

Исторический эксперимент

Именно таким вопросом задался англичанин Стивен Рингвуд и, чтобы выяснить ответ, создал точную копию лучшего телескопа Галилея (Ringwood S. D. A Galilean telescope // The Quarterly Journal of the Royal Astronomical Society, 1994, vol. 35, 1, p. 43-50). В октябре 1992 года Стив Рингвуд воссоздал конструкцию третьего телескопа Галилея и в течение года проводил с ним всевозможные наблюдения. Объектив его телескопа имел диаметр 58 мм и фокусное расстояние 1650 мм. Как и Галилей, Рингвуд диафрагмировал свой объектив до диаметра апертуры D = 38 мм, чтобы получить лучшее качество изображения при сравнительно небольшой потере проницающей способности. Окуляром служила отрицательная линза с фокусным расстоянием -50 мм, дающая увеличение в 33 раза. Поскольку в такой конструкции телескопа окуляр размещается перед фокальной плоскостью объектива, полная длина трубы составила 1440 мм.

Самым большим недостатком телескопа Галилея Рингвуд считает его малое поле зрения — всего 10″, или третья часть лунного диска. Причем на краю поля зрения качество изображения очень низкое. При использовании простого критерия Рэлея, описывающего дифракционный предел разрешающей способности объектива, можно было бы ожидать качества изображения в 3,5-4,0″. Однако хроматическая аберрация снизила его до 10-20″. Проницающая сила телескопа, оцененная по простой формуле (2 + 5lg ), ожидалась около +9,9 m . Однако в действительность не удалось обнаружить звезд слабее +8 m .

При наблюдении Луны телескоп показал себя неплохо. В него удалось разглядеть даже больше деталей, чем было зарисовано Галилеем на его первых лунных картах. «Возможно, Галилей был неважный рисовальщик, или его не очень интересовали детали лунной поверхности?» — удивляется Рингвуд. А может быть, опыт изготовления телескопов и наблюдения с ними был у Галилея еще недостаточно велик? Нам кажется, что причина именно в этом. Качество стекол, отполированных собственными руками Галилея, не могло соперничать с современными линзами. Ну и, конечно, Галилей не сразу научился смотреть в телескоп: визуальные наблюдения требуют немалого опыта.

Кстати, а почему создатели первых зрительных труб — голландцы — не совершили астрономических открытий? Предприняв наблюдения с театральным биноклем (увеличение 2,5-3,5 раза) и с полевым биноклем (увеличение 7-8 раз), вы заметите, что между их возможностями пролегает пропасть. Современный высококачественный 3-кратный бинокль позволяет (при наблюдении одним глазом!) с трудом заметить крупнейшие лунные кратеры; очевидно, что голландская труба с таким же увеличением, но более низким качеством, не могла и этого. Полевой бинокль, дающий приблизительно те же возможности, что и первые трубы Галилея, показывает нам Луну во всей красе, со множеством кратеров. Усовершенствовав голландскую трубу, добившись в несколько раз более высокого увеличения, Галилей перешагнул через «порог открытий». С тех пор в экспериментальной науке этот принцип не подводит: если вам удастся улучшить ведущий параметр прибора в несколько раз, вы обязательно сделаете открытие.

Безусловно, самым замечательным открытием Галилея явилось обнаружение четырех спутников Юпитера и диска самой планеты. Вопреки ожиданиям, низкое качество телескопа не сильно помешало наблюдениям системы юпитеровых спутников. Рингвуд ясно видел все четыре спутника и смог, как и Галилей, каждую ночь отмечать их перемещение относительно планеты. Правда, не всегда удавалось одновременно хорошо сфокусировать изображение планеты и спутника: очень мешала хроматическая аберрация объектива.

А вот что касается самого Юпитера, то Рингвуд, как и Галилей, не смог обнаружить никаких деталей на диске планеты. Слабоконтрастные широтные полосы, пересекающие Юпитер вдоль экватора, оказались полностью замыты в результате аберрации.

Очень интересный результат получил Рингвуд при наблюдении Сатурна. Как и Галилей, при увеличении в 33 раза он увидел лишь слабые вздутия («загадочные придатки», как писал Галилей) по бокам планеты, которые великий итальянец, конечно же, не мог интерпретировать как кольцо. Однако дальнейшие эксперименты Рингвуда показали, что при использовании других окуляров с большим увеличением, все же можно различить более ясные признаки кольца. Сделай это в свое время Галилей — и открытие колец Сатурна состоялось бы почти на полстолетия раньше и не принадлежало бы Гюйгенсу (1656 г.).

Впрочем, наблюдения Венеры доказали, что Галилей быстро стал искусным астрономом. Оказалось, что в наибольшей элонгации фазы Венеры не видны, ибо слишком мал ее угловой размер. И только когда Венера приблизилась к Земле и в фазе 0,25 ее угловой диаметр достиг 45″, стала заметна ее серпообразная форма. В это время ее угловое удаление от Солнца уже было не так велико, и наблюдения затруднены.

Самым же любопытным в исторических изысканиях Рингвуда, пожалуй, явилось разоблачение одного старого заблуждения по поводу наблюдений Галилеем Солнца. До сих пор считалось общепринятым, что в телескоп системы Галилея невозможно наблюдать Солнце, спроецировав его изображение на экран, ибо отрицательная линза окуляра не может построить действительного изображения объекта. Только изобретенный немного позже телескоп системы Кеплера из двух положительных линз дал такую возможность. Считалось, что впервые наблюдал Солнце на экране, помещенном за окуляром, немецкий астроном Кристоф Шейнер (1575-1650). Он одновременно и независимо от Кеплера создал в 1613 г. телескоп аналогичной конструкции. А как наблюдал Солнце Галилей? Ведь именно он открыл солнечные пятна. Долгое время существовало убеждение, что Галилей наблюдал дневное светило глазом в окуляр, пользуясь облаками как светофильтрами или подкарауливая Солнце в тумане низко над горизонтом. Считалось, что потеря Галилеем зрения в старости частично была спровоцирована именно его наблюдениями Солнца.

Однако Рингвуд обнаружил, что и телескоп Галилея может давать вполне приличную проекцию солнечного изображения на экран, причем солнечные пятна видны очень отчетливо. Позже, в одном из писем Галилея, Рингвуд обнаружил подробное описание наблюдений Солнца путем проекции его изображения на экран. Странно, что этого обстоятельства не отмечали раньше.

Думаю, что каждый любитель астрономии не откажет себе в удовольствии на несколько вечеров «стать Галилеем». Для этого нужно всего лишь сделать Галилеев телескоп и попытаться повторить открытия великого итальянца. В детстве один из авторов этой заметки делал из очковых стекол кеплеровы трубы. А уже в зрелом возрасте не удержался и соорудил инструмент, похожий на телескопа Галилея. В качестве объектива была использована насадочная линза диаметром 43 мм силой в +2 диоптрии, а окуляр с фокусным расстоянием около -45 мм был взят от старинного театрального бинокля. Телескоп получился не очень мощный, с увеличением всего в 11 раз, но и у него поле зрения оказалось маленькое, диметром около 50″, а качество изображения неровное, значительно ухудшающееся к краю. Однако изображения стали значительно лучше при диафрагмировании объектива до диаметра 22 мм, и еще лучше — до 11 мм. Яркость изображений, разумеется, понизилась, но наблюдения Луны от этого даже выиграли.

Как и ожидалось, при наблюдении Солнца в проекции на белый экран этот телескоп действительно давал изображение солнечного диска. Отрицательный окуляр увеличил эквивалентное фокусное расстояние объектива в несколько раз (принцип телеобъектива). Поскольку не сохранилось сведений о том, на каком штативе Галилей устанавливал свой телескоп, автор наблюдал, удерживая трубу в руках, а в качестве опоры для рук использовал ствол дерева, забор или раму открытого окна. При 11-кратном увеличении этого было достаточно, но при 30-кратном, очевидно, у Галилея могли быть проблемы.

Можно считать, что исторический эксперимент по воссозданию первого телескопа удался. Теперь мы знаем, что телескоп Галилея был довольно неудобным и скверным прибором с точки зрения современной астрономии. По всем характеристикам он уступал даже нынешним любительским инструментам. У него было лишь одно преимущество — он был первым, а его создатель Галилей «выжал» из своего инструмента все, что возможно. За это мы чтим Галилея и его первый телескоп.

Стань Галилеем

Нынешний 2009 год был объявлен Международным годом астрономии в честь 400-летия рождения телескопа. В компьютерной сети, вдобавок к существующим, появилось много новых замечательных сайтов с изумительными снимками астрономических объектов.

Но как бы ни были насыщены интересной информацией сайты Интернета, главной целью МГА было продемонстрировать всем желающим реальную Вселенную. Поэтому в числе приоритетных проектов оказался выпуск недорогих телескопов, доступных любому желающему. Самым массовым стал «галилеоскоп» — маленький рефрактор, спроектированный высокопрофессиональными астрономами-оптиками. Это не точная копия телескопа Галилея, а скорее — его современная реинкарнация. У «галилеоскопа» двухлинзовый стеклянный ахроматический объектив диаметром 50 мм и фокусным расстоянием 500 мм. Четырехлинзовый пластиковый окуляр дает увеличение 25x, а 2x линза Барлоу доводит его до 50x. Поле зрения телескопа 1,5 o (или 0,75 o с линзой Барлоу). С таким инструментом легко можно «повторить» все открытия Галилея.

Впрочем, сам Галилей с таким телескопом сделал бы их значительно больше. Цена инструмента в 15-20 долл. США делает его действительно общедоступным. Любопытно, что со штатным положительным окуляром (даже с линзой Барлоу) «галилеоскоп» в действительности представляет собой трубу Кеплера, но при использовании в качестве окуляра одной лишь линзы Барлоу он оправдывает свое название, становясь 17x трубой Галилея. Повторить открытия великого итальянца в такой (оригинальной!) конфигурации — задача не из легких.

Это весьма удобный и вполне массовый инструмент, пригодный для школ и начинающих любителей астрономии. Его цена значительно ниже, чем у существовавших ранее телескопов с аналогичными возможностями. Было бы весьма желательно приобрести такие инструменты для наших школ.